Predicting the Stock Market using Artificial Intelligence

> Lawrence Stark CS 687 Spring 2014

> > 200

A CATANGIA

Topic

• Using historical data (3 days), predict whether tomorrow's stock market will close UP or DOWN

 Automated prediction based on model developed from individual stock market data.

Utility

Get Rich the Quick and Easy Way!

Personal Finance
 e.g. Self-managed 401k

Complex Signal Analysis (Data Mining):
Find patterns given unknown distribution
Predict future behavior for irrational agents

Method

Candlestick Pattern

Munehisa Homma: Japanese Rich Trader from 1700's

Steve Nison: Applied Homma's candlesticks to contemporary investment (stocks)

Model Market Behavior

Use 500 stocks to learn individual stock movement

Use model to predict market value for next day

Background

- JPM: Days of loss in 2013 = 0
 Virtu: Days of loss 2009-2013 = 1
 Support Vector Machines
 Neural Networks
 Twitter
 Autoregressive Integrated Moving Average
 - (ARIMA)
 - Echostate Networks

Data Source

 Tradestation: www.tradestation.com Stocks: S&P 500 + SPDR Timeframe: January 1993 to October 2013 3 Day Sliding Window Use day 4 for label Train/Test : approximately 2.2 million samples Validate: approximately 5,200 samples

Data

• Features:

Open, High, Low, CloseFor each of Day 1 to 3

Delta Close Day1/2 and Day 2/3

Label: related to line slope: Up, Down,

Peak, Trough

Example: 10.97,11.05,10.82,10.97 11.01,11.05,10.56,10.67 10.60,10.67,10.57,10.60 -0.30,-0.07,DOWN

D40017546

Feature Extraction

- So Far: 3 Day candlestick patterns
 - Only 15 attributes
 - Manually reduced from 24
 - PCA suggests only 3: Δ C12, Δ C23, D₃Vol
 - **Possible Future:**
 - 100 Day candlestick pattern
 - More than 500 attributes
 - PCA critical for dimensionality reduction

AI Methods Baseline: random buy and sell Bayesian Inference $P(x \mid \omega_1)$ Likelihood Ratio Test: $P(x \mid \omega_1) < P(x \mid \omega_1)$ • Hidden Markov Models **Vector Quantization P(X|S):** $\Im_k(i,j) \equiv \Im_k(i,j,X|S) \equiv \frac{\Im_k(i,j,X|S)}{i}$ P[X|S] $\partial O(\Theta; \Theta(t))$ EM: RANSAC Random subsets best model K computed as:

Software Platforms

WEKA, Matlab and Java (preprocessing only)
Naive Bayes (WEKA)

Implementation: John & Langley - Estimating Continuous Distributions in Bayesian Classifiers

- HMMWeka Plugin for Hidden Markov Models
 - Implementation: Bishop Pattern Recognition and Machine Learning

RANSAC (Matlab)

Implementation: Fishler & Boles - Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography

Performance Evaluation

• SPDR (spider)

Mimics entire S&P 500

Standard for performance evaluation

Error:

Error:
$$\sqrt{(Z(t+1)-SPDR(t+1))^2}$$

Metrics:

Accuracy: predicted market status vs. SPDR ROI: the amount of money gained from trades Market Days: days money is used for trading

Cross Validation

• Training Set 50% of S&P 500 (1.1 million) ⁴⁰⁰¹⁷⁵ Test Set Remaining 50% of S&P 500 (1.1 million) Validation Set 100% of SPDR (5235) Validation set deliberately not mixed with train/test sets to mimic real world.

Data Visualization

0.5 -

40017546

- Red: Naive Bayes (default)
- Blue: Naive Bayes w/ Kernel
 Estimator
- Green: Naive Bayes w/PCA

0.5

Preliminary Results

58481

D 40017546 A

DU ALINEIALI

Trial	Accuracy	Market Days	ROI
Random	51%	2618	-31.69%
Naive Bayes Standard	44%	2396	100.32%
Naive Bayes Kernel Est.	52.47%	1201	185.98%
Naive Bayes3 w/ PCA	55.16%	1201	268.46%

Conclusion

- This is hard! Hence poor results so far
 - 3 Day candlestick is standard but may not provide enough attributes
 - Too much data. Looking forward to RANSAC for data reduction.
- May further employ K means and then use clusters for test and training.
 - Influence of outside phenomenon like inflation