Predicting the Stock Market using Artificial Intelligence

> Lawrence Stark CS 687 Spring 2014

> > 200

A CATANGIA

Topic

• Using historical data (3 days), predict whether tomorrow's stock market will close UP or DOWN

Predict stock market volatility using historical VIX data (16 & 44 days)

• Automated prediction based on model developed from individual stock market data.

Utility

Get Rich the Quick and Easy Way!

Personal Finance
 e.g. Self-managed 401k

Complex Signal Analysis (Data Mining):
Find patterns given unknown distribution
Predict future behavior for irrational agents

Method

Candlestick Pattern

Munehisa Homma: Japanese Rich Trader from 1700's

Steve Nison: Applied Homma's candlesticks to contemporary investment (stocks)

Model Market Behavior

Use 500 stocks to learn individual stock movement

Use model to predict market value for next day

Background

- JPM: Days of loss in 2013 = 0
 Virtu: Days of loss 2009-2013 = 1
 Support Vector Machines
 Neural Networks
 Twitter
 Autoregressive Integrated Moving Average
 - (ARIMA)
 - Echostate Networks

Data Source

 Tradestation: www.tradestation.com Stocks: S&P 500 + SPDR $\frac{1}{4}$ $\frac{1}$ Train/Test : approximately 2.2 million samples Validate: approximately 5,200 samples VIX: CBOE Approximately 5,200 samples Same 20 year span as S&P 500 data

Data

• Features:

Open, High, Low, CloseFor each of Day 1 to 3

Delta Close Day1/2 and Day 2/3

Label: related to line slope: Up, Down,

Peak, Trough

Example: 10.97,11.05,10.82,10.97 11.01,11.05,10.56,10.67 10.60,10.67,10.57,10.60 -0.30,-0.07,DOWN

D40017546

Feature Extraction

- So Far: 3 Day candlestick patterns
 - Only 15 attributes
 - Manually reduced from 24
 - PCA suggests only 3: Δ C12, Δ C23, D₃Vol
 - VIX:

0017546

16 and 44 Day80 and 220 attributes respectively

AI Methods **Baseline:** random buy and sell **Classification: Bayesian Inference Radial Basis Functions Regression:** Linear Regression **Support Vector Machine Regression Radial Basis Function Regression Clustering – K-Means**

Software Platforms

• WEKA Version 3.7

D 40017545

- Used only standard algorithms no plug-ins. Tava
 - Custom program written to preprocess the data and produce N-Day sliding windows (3, 16, and 44)

Performance Evaluation

• SPDR (spider)

Mimics entire S&P 500

Standard for performance evaluation

Error:

Error:
$$\sqrt{(Z(t+1)-SPDR(t+1))^2}$$

Metrics:

Accuracy: predicted market status vs. SPDR ROI: the amount of money gained from trades Market Days: days money is used for trading

Cross Validation

• Training Set 50% of S&P 500 (1.1 million) ⁴⁰⁰¹⁷⁵ Test Set Remaining 50% of S&P 500 (1.1 million) Validation Set 100% of SPDR (5235) Validation set deliberately not mixed with train/test sets to mimic real world.

Data Visualization

58481

D40017546 A

OCCANDING IN

1

0.5

0

0

Radial Basis Function (41 Basis Functions) Naive Bayes (w/ Kernel Estimator) Naive Bayes (w/ PCA) Naive Bayes (default)

Final Results

EK 09358481

10 March

D40017546 A

04

ATE PORISE TRACK

DOI MUNISIMU

A 2033 Sus Chi

9

85544

Trial	Accuracy	Market Days	ROI
Random	51%	2618	-31.69%
Naive Bayes3 w/ PCA	55.16%	1201	268.46%
Radial Basis Function Net	80.92%	488	432.10%
Radial Basis Regression	70.49%	N/A	N/A

Visualization of RBF Errors

848

Results From Clustering

Visualization of K-Means Clusters:

40017546/

Plot Matrix	close13	close14	close15	close16	delta1	delta2	delta3	delta4	delta5	delta6	delta7	delta8	delta9	delta10	delta11	delta12
vix																
delta15		₩ ₩	H .	₽ 4												
delta14		•••	•••) # \$	•••												
delta13		P16	m	••												
delta12		P-1	9.4	₽ ₩												
deltall																

Conclusion

- Accounting for volatility makes a big difference!
- Achieved success as 2 separate models:
 - Classification (discrete categories)
 - Regression
 - Next step: combine models
 - Expectation is greater ROI (not accuracy)
 - Predictive ability is maximized with current models
 - Include other factors for greater accuracy